Nutritional values and Chemical Constituents of *Anadara brughtonii* (Schrenck, 1867) and *Crassostea gigas* (Thunberg,1793) used in Traditional Medicine in Myanmar

Thein Gi Naing¹, Hnin Hnin Htun¹, Win Soe¹, Than Tun¹, Maung Maung Thet¹, Khin Mya Mya², Thant Zin², Thein Zaw Lin¹

1 University of Traditional Medicine, Mandalay, 2 Department of Zoology, Mandalay University

INTRODUCTION

- ❖ Myanmar used animals and their products as medicinal substances since ancient times.
- ❖ Most of Myanmar traditional drugs are derived from sources of plants and animals.
- ❖ Wild and domestic animals and their by-products (e.g., hooves, skins, bones, feathers, milk and tusks) form important ingredients in the preparation of curative, protective and preventive medicine.

- According to the World Health Organization (1993), about 80% of the world people rely primarily on animal and plant-based medicines.
- ❖ About 20 % of Myanmar traditional medicine is based on animal-derived substances.

LITERATURE REVIEW

Anadara broughtonii

- species of Ark clam.
- ❖ In the Myanmar costal water it had been recorded from Ngapali, Maungmagan, KyaukKalat., Cocos Island.
- ❖ The species is distributed in Far East, from Russia down to Korea, Mainland China, Japan and Taiwan(Cho et.al.,2007)

Traditional medicine in Myanmar

- shell of *Anadara broughtonii* was also used by rulers of early Myanmar dynasties.
- The ash form of Jau thwa khone has given to remove toxin from the body,
- increased energy power, salty and cool in nature.

- ❖ It also used in the treatment of
- indigestion,
- certain gastric and intestinal disorder,
- ❖ cough,
- ❖ asthma,
- chest injuries,
- *mouth disease,
- ❖ oliguria,

- dysentery,
- *hotness of urine,
- piles,
- ❖bowel disorder,
- blood vomiting and menstrual disorders in Myanmar traditional medicine (AshinNagathein, 1972).

Crassostrea gigas

- ❖ The Pacific oyster *Crassostrea gigas* is a marine invertebrate
- belonging to the family Ostreidae(Mollusca, Bivalvia)
- worldwide distribution from Japan to occidental countries in Europe and America (Guoet al., 2008)

Traditional medicine in Myanmar

- ❖ Shell of *Crassostrea gigas* was used by rulers of early Myanmar dynasties.
- ❖ Traditional medicine, As the In terms of Myanmar Traditional Medicine, taste of ka nu ka mar is sweet and cool in nature.
- *Recommended dosage is 1 to 2 grams of ash.
- ❖ The ash of ka nu ka mar has been given promote digestive power and stimulate appetite

- ❖ It is also used in the treatment of
- indigestion,
- hepatitis,
- certain gastric and intestinal disorder,
- ❖ cough, asthma,
- chest injuries,
- * mouth disease,
- ❖ oliguria,
- dysentery, bowel disorder, blood vomiting and menstrual disorders in Myanmar traditional medicine (AshinNagathein, 1972).

Traditional Medicine Formulae

- *which are commonly used in Myanmar Traditional Medicine formulation (TMF).
- ❖ Jau thwa khone pyar (Ash) is the ingredient of TMF6 (Ha Leik da Sonna Ngan Hsei).
- ❖ Ka nu ka mar is the ingredients of TMF-24 Na Ga Ra (Lei;Hnjin;KaLa'Hsei;).

- Though these samples are commonly in Myanmar Traditional Medicine much work has not been reported on the proximate and chemical compositions.
- Therefore these crude animal's products were selected for chemical and pharmacological investigation

OBJECTIVES

- to identify the two species of shells that are used in Myanmar Traditional Medicine
- to investigate the nutritional values and chemical constituents of two species of shells used in Myanmar Traditional Medicine

METHODOLOGY

Study Design

❖ Zoological identification of crude drugs.

Study Area

Study Period

• from July 2018 to February 2019.

Materials and Methods

- Extraction of samples is one of the procedure of Association of Official Analytical Chemistry (A.O.A.C).
- ❖ Determination of elements by Energy Dispersive X-ray Fluorescence Spectrophotometer (EDXRF).

Statistical Analysis

• The results were expressed as mean \pm standard deviation (SD).

Samples Collection

- ❖ Shells of *A. broughtonii* and *C. gigas* were purchased locally from Baja Hsei: zain(traditional medicine shop)
- ti had been recorded from Ngapli, Maungmagan, KyaukKalat, Coco Island locations in Myanmar Costal water
- ❖ Specimen were identified according to the Abbott, R.T. (1991).

Samples Preparation

GN

Samples Preparation

- ❖ The samples 150g shells of *Anadara broughtonii* and *Crassostrea gigas* were first washed thoroughly with distilled water
- washed with sterile water mixed with 3cc lime juice
- * washed with sterile water to remove foreign matters
- sample is dried at drying condition in oven.

- ❖ One hundred and fifty grams of samples were crushed into smaller pieces and then make powder by blender.
- ❖ The powder was sieved using a stainless steel sieve to get fine powder and
- then sterilized for an hour in the oven at 105°C and stored in bottles prior to analysis.
- Proximate analysis, mineral composition and pharmaceutical product were carried out on dried powder.

Preparation of Powder and Ash form

A. Powder of Anadara broughtonii

C. Powder of Crassostrea gigas

B. Ash of Anadara broughtonii

D. Ash of Crassostrea gigas

RESULTS

Systematic Position of the Studied Species

Phylum - Mollusca

Class - Bivalvia

Order - Arcida

Family - Arcidae

Genus - Anadara

Species - A.broughtonii

Order - Ostreoida

Family - Ostreidae

Genus - Crassostrea

Species - C. gigas

Crassostrea gigas

Synonym

Magallana gigas (Thunberg, 1793)

Anadara broughtonii (Schrenck, 1867)

Description of Study Species

1. Shell of Anadara broughtonii

- Scientific name Anadara broughtonii
- Local name

- Jau thwa khone
- Common name Sea mussel

A.Dorsal view of shell of *Anadara broughtonii*.

B. Ventral view of shell of *Anadara broughtonii*.

- ❖ Shell of *Anadara broughtonii* 6 to 9 cm length
- ❖ It is thick, shell equivalve, solid, ovate, strongly inflated, slightly longer than high and feebly in equilateral.
- ❖ About 18 radial ribs (15 to 20) with wide interstices at each valve.

Ribs stout and distinctly rugose, bearing regular,

often rectangular nodules.

3/4/2020 TGN

- ❖ Internal margins with strong crenulations corresponding with the external radial ribs.
- Outside of shell white under the yellowish brown periostracum.
- ❖ Inner side white, often tinged light yellow towards the umbonal cavity (Plate 3).

2. Shell of Crassostrea gigas

- ❖ Scientific name Crassostrea gigas
 - ❖ Local name ka nu ka mar
 - Common name Oyster
- ❖ The shell of *Crassostrea gigas* is large, rounded, radial folds are often extremely rough and sharp.

- ❖ The two valves of the shell are slightly different in size and shape, the right valve being moderately concave.
- ❖ Shell colour is variable, usually pale white or off-white. Mature specimens can vary from 80 to 400 mm long (Plate4).

. Ventral view of right valve of *Crassostrea gigas*

Ventral view of left valve of Crassostrea gigas

A. Dorsal view of right valve of *Crassostrea gigas*

C. Dorsal view of left valve of Crassostrea gigas

B. Ventral view of right valve of *Crassostrea gigas*

D. Ventral view of left valve ofCrassostrea gigas

Table 1 Proximate composition of powder of shells of *Anadara broughtonii*

No	Parameters	Value 1 (%)	Value 2 (%)	Value 3 (%)	Value 4 (%)	Value 5 (%)	Mean ±SD (%)
1	Moisture	0.28	0.27	0.26	0.28	0.28	0.28±0.01
2	Ash	97.65	97.75	97.65	98.45	98.45	97.75±0.04
3	Carbohydrate	0.00	0.00	0.00	0.00	0.00	0±0.00
4	Protein	0.16	0.17	0.19	0.5	0.5	0.2 ± 0.01
5	Fiber	2.48	2.46	2.47	2.47	2.48	2.47±0.01
6	Fat	0.73	0.72	0.73	0.72	0.73	0.73±0.01

Table 2 Total ash, water soluble ash and acid insoluble ash content of powder of shells of *Anadara broughtonii*.

No.	Parameters	Quantity (%)
1	Total ash	97.75±0
2.	Water soluble	3.7 ± 0
3.	Acid insoluble	76.75±0

Table 3 Percentage of macroelements involved in powder of shells of *Anadara broughtonii*

No	Elements	Quantity 1	Quantity 2	Quantity 3	Mean±SD
		(%)	(%)	(%)	(%)
1	Magnesium (Mg)	1.09	1.09	1.09	1.1±0.1
2	Sodium (Na)	0.00	0.00	0.00	0.00 ± 0
3	Calcium (Ca)	52.75	52.75.	52.75	52.75±0
4	Chlorine (Cl)	0.00	0.00	0.00	0.00 ± 0
5	Potassium (K)	0.00	0.00	0.00	0.00 ± 0
6	Sulfur (S)	0.00	0.00	0.00	0.00 ± 0

Table 4 Percentage of microelements involved in Powder of shells of *Anadara broughtonii*

No	Elements	Quantity 1	Quantity 2	Quantity 3	Mean±SD
		(%)	(%)	(%)	(%)
1	Aluminium (Al)	-	-	-	-
2	Silicon (Si)	0.2	0.2	0.2	0.2 ± 0
3	Manganese (Mn)	0.1	0.1	0.1	0.1 ± 0.01
4	Iron (Fe)	0.01	0.01	0.01	0.1 ± 0
5	Copper (Cu)	0.0002	0.0002	0.0002	0.0002 ± 0
6	Zinc (Zn)	0.01	0.01	0.01	0.01 ± 0

Table 5 Percentage of heavy metals involved in powder of shells of *Anadara broughtonii*

No	Elements	Quantity 1	Quantity 2	Quantity 3	Mean±SD
		(%)	(%)	(%)	(%)
1	Arsenic (As)	-	-	-	-
2	Cadmium (Cd)	0.0003	0.0003	0.0003	0.0003±0
3	Mercury (Hg)	-	-	-	-
4	Lead (Pb)	0.0008	0.0008	0.0008	0.0008±0

Table 6 Proximate composition of powder of shells of *Crassostrea gigas*

No	Parameters	Value 1 (%)	Value 2 (%)	Value 3 (%)	Value 4 (%)	Value 5 (%)	Mean ±SD (%)
1	Moisture	0.27	0.25	0.24	0.24	0.24	0.24±0.01
2	Ash	97.15	97.16	97.25	97.15	99.36	97.16±0.1
3	Carbohydrate	0	0	0	0	0.17	0 ± 0.00
4	Protein	0.58	0.57	0.56	1	1	0.58 ± 0.24
5	Fiber	1.92	1.93	1.95	1.93	1.93	1.93±0.01
6	Fat	0.54	0.56	0.55	0.09	0.09	0.54 ± 0.3

Table 7 Total ash, Water soluble ash and Acid insoluble ash Contents of powder of shells of *Crassostrea gigas*

No.	Parameters	Quantity((%)
1.	Total ash	97.16±0.014
2.	Water soluble	1.75±0
3.	Acid insoluble	72.44±0

Table 8 Percentage of macroelements involved in Powder shells of *Crassostrea gigas*

No	Elements	Value 1 (%)	Value 2 (%)	Value 3 (%)	Mean ±SD (%)
1.	Magnesium(g)	3.2311	3.2311	3.2311	3,2311±0
2.	Sodium (Na)	0.00	0.00	0.00	0.00 ± 0
3.	Calcium (Ca)	54	54	54	54 ±0
4.	Chlorine (Cl)	0.00	0.00	0.00	0.00 ± 0
5.	Potassium (K)	0.00	0.00	0.00	0.00 ± 0
6.	Sulfur (S)	0.00	0.00	0.00	0.00 ± 0

Table 9 Percentage of microelements involved in Powder of shells of *Crassostrea gigas*

No	Elements	Value 1	Value 2	Value 3	Mean ±SD
		(%)	(%)	(%)	(%)
1	Aluminium (Al)	0.00	0.00	0.00	0.00 ± 0
2	Silicon (Si)	0.1	0.1	0.1	0.1 ± 0
3	Manganese(Mn)	0.2	0.2	0.2	0.2 ± 0
4	Iron (Fe)	0.13	0.13	0.13	0.13±0
5	Copper (Cu)	0.0004	0.0004	0.0004	0.0004 ± 0
6	Zinc (Zn)	0.2	0.2	0.2	0.2±0

Table 10 Percentage of heavy metals involved in Powder of shells of *Crassostrea gigas*

No	Elements	Quantity	Quantity	Quantity	Mean±S
		1 (%)	2 (%)	3 (%)	D
1	Arsenic (As)	0.0001	0.0001	0.0001	0.0001
2	Cadmium(Cd)	_	-	-	-
3	Mercury (Hg)	-	-	-	-
4	Lead (Pb)	0.0005	0.0005	0.0005	0.0005

Fig. 1 Proximate Composition of Powder of shells of Anadara broughtonii

Fig.2 Percentage of macroelements involved in powder of shells of *Anadara broughtonii*

Fig. 3 Percentage of microelements involved in Powder of shells of *Anadara broughtonii*

Fig.4 Total ash, water soluble ash and acid insoluble ash content of powder of shells of *Anadara broughtonii*

Fig. 5 Percentage of heavy metals involved in powder of shells of *Anadara broughtonii*

Fig. 6 Proximate composition of powder of shells of *Crassostrea gigas*

Fig.7 Percentage of macroelements involved in powder of shells of *Crassostrea gigas*

Fig. 8 Percentage of microelements involved in powder shells of *Crassostrea gigas*

Fig. 9 Total ash, water soluble ash and acid insoluble ash contents of *Crassostrea gigas*

Fig. 10 Percentage of heavy metals involved in powder of shells of *Crassostrea gigas*

DISCUSSION

- The Proximate Composition of shells Powder of *Anadara broughtonii* and *Crassostrea gigas* revealed that these contained reasonable amounts of moisture, carbohydrate, fiber, protein and fat.
- Carbohydrate and fat contents were found to be very low in these samples. This confirms that sample is not a good source of fat.

- The contents of fiber were found to be considerable amount in these samples.
- Mixtures of soluble and insoluble fibers improve diabet-ic glucose control and lower serum triglycerides (Anderson 1990).
- Protein provides essential amino acids, particularly important during growth and development, and it is a source of energy (Thomas *et al.*, 2004).

- The content of ash was found to be highest in these samples (Table 1,6 and Fig 1,6).
- It is a reflection of total inorganic matter present in these samples and also indicates that they possess the most abundant mineral like calcium, which are essential for good health (Oloyede, 2008).

- In this study cadmium, lead and mercury were found to contain below levels according to the WHO guideline values of cadmium, lead and mercury.
- Arsenic and mercury were not found in powder of *Anadara broughtonii*.
- Cadmium and mercury were not found in powder Crassostrea gigas.
- This finding indicated that these animal parts may be used safety in the traditional medicine.

ACKNOWLEDGEMENT

- Dr Moe Swe, Director General, Department of Traditional Medicine, Naypyidaw.
- Dr Thant Zin Professor and Head, Department of Zoology, University of Mandalay
- Dr Thein Zaw Lin, Actinng Rector, University of Traditional Medicine, Mandalay for their kind to conduct this present study.

- Dr Khin Mya Mya, Professor, Department of Zoology, University of Mandalay, her patient guidance, kind supervision and constant encouragement in my research work.
- I am gratefully indebted to Dr Hla Swe, Head, Department of Academic Affairs, Retired at University of Yangon for his invaluable advice in my research work.
- I am also thank to Dr. Moe Kyaw Myint, Deputy Director/Head, Parasitology Research Division, Department of Medicinal Research, Pyin OoLwin Branch.
- I am gratefully indebted to my parents U Ye Naing and Daw Khin Saw Yi for their kindness and encouragement in my research work.

REFERENCES

- A.O.A.C., 2000. *Official methods of Analysis* 17th Edn. Washington DC: Association of official Analytical Chemist, Washington. pp 920-978
- Adverse Health Effects Of Heavy Metals In Children, 2011. Children's Health and the Environment WHO Training Package for the Health SectorWorld Health Organization. Available from: www.who.int/ceh (Accessed August 2016).
- American Herbal Products Association, 2009. Heavy metal analysis and limits in herbal dietary supplement
- AshinNagathein, 1972. Jauthwakhone, *JA Tha Ta Jinge Ni DaThamoudajaKjan:Gji*, Han Thawati Beidaga Poun Hnei Tai, Yangon, Myanmar. 211-213.
- AshinNagathein, 1972. ka nu ka mar, *JA Tha Ta Jinge Ni DaThamoudajaKjan:Gji*, Han Thawati Beidaga Poun Hnei Tai, Yangon, Myanmar. 210-211.

THANK YOU